如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由:
(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)
已知:如图,△ABC中,AB=AC,∠A=120°.
(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).
(2)猜想CM与BM之间有何数量关系,并证明你的猜想。
同学们都知道,在相同的时刻,物高与影长成比例,某班同学要测量学校国旗的旗杆高度,在某一时刻,量得旗杆的影长是8米,而同一时刻,量得某一身高为1.5米的同学的影长为1米,求旗杆的高度是多少?
已知线段MN = 1,在MN上有一点A,如果AN =,求证:点A是MN的黄金分割点.
线段AB上有一点C,已知AB=4㎝,BC=㎝,求AC的长并写出线段AC、BC、AB间的数量关系.
某学校如图所示,比例尺是1:2000,请你根据图中尺寸(单位:㎝),其中AB⊥AD,求出学校的周长及面积.