(本题12分)如图,抛物线交
轴正半轴于点A,顶点为M,对称轴NB交
轴于点B,过点C(2,0)作射线CD交MB于点D(D在
轴上方),OE∥CD交MB于点E,EF∥
轴交CD于点F,作直线MF。
(1)求点A,M的坐标;
(2)当BD为何值时,点F恰好落在抛物线上?
(3)当BD=1时,①、求直线MF的解析式,并判断点A是否落在该直线上;
②、延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3=
我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了 (a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.
例如:,它只有一项,系数为1;
,它有两项,系数分别为1,1,系数和为2;
,它有三项,系数分别为1,2,1,系数和为4;
,它有四项,系数分别为1,3,3,1,系数和为8;……
根据以上规律,解答下列问题:
(1)展开式共有 项,系数分别为 ;
(2)展开式共有 项,系数和为 .
某商品的售价为每件900元, 为了参与市场竞争, 商店按售价的9折再让利40元销售, 此时仍可获利10%, 此商品的进价是多少元?
、①5(x+8)-5=-6(2x-7)
②
如图,点在抛物线
上,过点
作与
轴平行的直线交抛物线于点
,延长
分别与抛物线
相交于点
,连接
,设点
的横坐标为
,且
。
当
时,求点
的坐标;
当
为何值时,四边形
的两条对角线互相垂直;
猜想线段
与
之间的数量关系,并证明你的结论.
供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后乙开抢修车载着所需材料出发.若
(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;
若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到,则t的最大值是多少?