光滑水平面上有一质量为M="2" kg的足够长的木板,木板上最有右端有一大小可忽略、质量为m=3kg的物块,物块与木板间的动摩擦因数,且最大静摩擦力等于滑动摩擦力。开始时物块和木板都静止,距木板左端L=2.4m处有一固定在水平面上的竖直弹性挡板P。现对物块施加一水平向左外力F=6N,若木板与挡板P发生撞击时间极短,并且撞击时无动能损失,物块始终未能与挡板相撞,求:
(1)木板第一次撞击挡板P时的速度为多少?
(2)木板从第一次撞击挡板P到运动至右端最远处所需的时间及此时物块距木板右端的距离X为多少?
(3)木板与挡板P会发生多次撞击直至静止,而物块一直向左运动。每次木板与挡板P撞击前物块和木板都已相对静止,最后木板静止于挡板P处,求木板与物块都静止时物块距木板最右端的距离X为多少?
如图所示,折射率n=的半圆形玻璃砖置于光屏MN的上方,其平面AB到MN的距离为h=10cm。一束单色光沿图示方向射向圆心O,经玻璃砖后射到光屏上的O′点。现使玻璃砖绕圆心O点顺时针转动,光屏上的光点将向哪个方向移动?光点离O′点最远是多少?
如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两板外无电场,板长L="0.2" m,板间距离d="0.2" m。在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B=5×10-3T,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0=105 m/s,比荷q/m=108 C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.
(1)试求带电粒子射出电场时的最大速度;
(2)证明:在任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和在MN上出射点的距离为定值,写出该距离的表达式;
(3)从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场,求粒子在磁场中运动的最长时间和最短时间.
在一绝缘支架上,固定着一个带正电的小球A,A又通过一长为10cm的绝缘细绳连着另一个带负电的小球B,B的质量为0.1kg,电荷量为×10-6C,如图所示,将小球B缓缓拉离竖直位置,当绳与竖直方向的夹角为60°时,将其由静止释放,小球B将在竖直面内做圆周运动.已知释放瞬间绳刚好张紧,但无张力. g取10m/s2.求
(1)小球A的带电荷量;
(2)释放瞬间小球B的加速度大小;
(3)小球B运动到最低点时绳的拉力.
(15分) 如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=3 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.5 m,C点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g=10 m/s2.求:
(1)A、C两点的高度差;
(2)小物块刚要到达圆弧轨道末端D点时对轨道的压力;
(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6)
(15分)如图所示,水平虚线L1、L2之间是匀强磁场,磁场方向水平向里,磁场高度为h.竖直平面内有一等腰梯形线框,底边水平,其上下边长之比为5:1,高为2h.现使线框AB边在磁场边界L1的上方h高处由静止自由下落,当AB边刚进入磁场时加速度恰好为0,在DC边刚进入磁场前的一段时间内,线框做匀速运动。求:
(1)DC边刚进入磁场时,线框的加速度;
(2)从线框开始下落到DC边刚进入磁场的过程中,线框损失的机械能和重力做功之比;