(本小题满分12分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
中,内角
的对边分别是
,已知
成等比数列,且
(Ⅰ)求的值(Ⅱ)设
,求
的值。
、设是定义在
上的增函数,对任意
,满足
。
(1)、求证:①当
(2)、若,解不等式
已知向量.
是否存在实数若存在,则求出x的值;若不存在,则证明之
设a为实数,记函数的最大值为
.
(1)设,求t的取值范围,并把
表示为t的函数
;
(2)求;
(3)试求:满足的所有实数
.
自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)
(Ⅲ)设a=2,b>0,c=1为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的最大允许值是多少?证明你的结论.