如图,在平面直角坐标系中,抛物线与
轴交于点C,与
轴交于点A(
,0),B(
,0).
(1)求抛物线的解析式;
(2)在第三象限的抛物线上有一动点D.
①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.
②如图(2),直线与抛物线交于点Q、C两点,过点D作直线DF⊥
轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为
?若存在,请求出点D的坐标;若不存在,请说明理由.
重百商场正销售某品牌的一款等离子宽屏幕电视机,年初时售价定为元,3月份售价降低了
元.由于伦敦奥运会的举行,8月份销售看好,故商场决定将售价在3月份的基础上上涨10%.奥运会结束后,由于销售不畅,故商场决定将售价在8月份的基础上下调10%.
(1)请用代数式表示该款等离子宽屏幕电视机现在的价格;
(2)若年初时售价定为6500元,3月初售价降低了500元,那么该款等离子宽屏幕电视机现在的价格是多少元?
(1)当时,求代数式
的值.
(2) 已知的值为7 ,求代数式
的值
列式并计算:
(1)﹣1减去的差乘以﹣7的倒数的积;
(2)﹣2、5、﹣9这三个数的和的绝对值比这三个数的绝对值的和小多少?
将0,,
,
这四个数在数轴上表示出来.并用“<”号连接起来.
已知,如图,抛物线>0)与
轴交于点C,与
轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.