已知,如图,抛物线>0)与
轴交于点C,与
轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
在直角坐标系 中, 、 ,将 经过旋转、平移变化后得到如图1所示的 .
(1)求经过 、 、 三点的抛物线的解析式;
(2)连接 ,点 是位于线段 上方的抛物线上一动点,若直线 将 的面积分成 两部分,求此时点 的坐标;
(3)现将 、 分别向下、向左以 的速度同时平移,求出在此运动过程中 与 重叠部分面积的最大值.
如图,在直角坐标系 中,矩形 的顶点 、 分别在 轴和 轴正半轴上,点 的坐标是 ,点 是 边上一动点(不与点 、点 重合),连接 、 ,过点 作射线 交 的延长线于点 ,交 边于点 ,且 ,令 , .
(1)当 为何值时, ?
(2)求 与 的函数关系式,并写出 的取值范围;
(3)在点 的运动过程中,是否存在 ,使 的面积与 的面积之和等于 的面积?若存在,请求 的值;若不存在,请说明理由.
如图,在 中, ,以 边为直径作 交 边于点 ,过点 作 于点 , 、 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 ,且 ,求 的半径与线段 的长.
如图,反比例函数 与一次函数 的图象交于点 、 , .
(1)求这两个函数解析式;
(2)将一次函数 的图象沿 轴向下平移 个单位,使平移后的图象与反比例函数 的图象有且只有一个交点,求 的值.
如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在 处接到指挥部通知,在他们东北方向距离12海里的 处有一艘捕鱼船,正在沿南偏东 方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在 处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.