某所学校位于北纬21°,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为35.5°;夏至日正午时刻,太阳光的夹角最大,约为82.5°.己知该校一教学楼窗户朝南,窗高207cm,如图(1).请你为该窗户设计一个直角形遮阳棚BCD,如图(2),要求最大限度地节省材料,夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡.
(1)在图(3)中画出设计草图;
(2)求BC、CD的长度(结果精确到个位)
(参考数据:sin35.5°≈0.58,cos35.5°≈0.81,tan35.5°≈0.71,sin82.5°≈0.99,cos82.5°≈0.13,tan82.5°≈7.60)
七年级我们学过三角形的相关知识,在动手实践的过程中,发现了一个基本事实:
三角形的三条高(或三条高所在直线)相交于一点.
其实,有很多八年级、九年级的问题均可用此结论解决.
【运用】
如图,已知:△ABC的高AD与高BE相交于点F,且∠ABC=45°,过点F作FG∥BC交AB于点G,求证:FG+CD=BD.
小方同学在解答此题时,利用了上述结论,她的方法如下:
连接CF并延长,交AB于点M,
∵△ABC的高AD与高BE相交于点F,
∴CM为△ABC的高.
(请你写出小方没完成的证明过程.)
【操作】
如图AB是圆的直径,点C在圆内,请仅用无刻度的直尺画出△ABC中AB边上的高.
(不写画法)
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)CD为⊙O的切线吗,说明理由;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
如图,,D、E分别是半径OA和OB的中点,试判断CD与CE的大小关系,并说明理由.
如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P.
(1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法)
(2)点D在⊙O上吗?说明理由;
(3)试说明:AC平分∠BAD.