游客
题文

若关于x的二次函数y=a+bx+c(a>0,c>0,a、b、c是常数)与x轴交于两个不同的点A(,0),B(,0)(0<),与y轴交于点P,其图像顶点为点M,点O为坐标原点。

(1)当=c=2,a=时,求与b的值;
(2)当=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;
(3)当=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值。



 

 



科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,已知方格纸中有A、B、C三个格点,求作一个以A、B、C为顶点的格点四边形.

(1)在图1中作出的四边形是中心对称图形但不是轴对称图形.
(2)在图2中作出的四边形是轴对称图形但不是中心对称图形.
(3)在图3中作出的四边形既是轴对称图形又是中心对称图形.

解方程
(1)x2-10x=96
(2)阅读下面的例题:
解方程x2-|x|-2=0.
解:分两种情况讨论:
①当x≥0时,原方程化为x2-x-2=0.
解得:x1=2,x2=-1(不合题意,舍去);
②当x<0时,原方程化为x2+x-2=0.
解得:x1=-2,x2=1(不合题意,舍去);
综上所述,原方程的根是x1=2,x2=-2.
请参照前面的例题的解法解方程:x2-|x-1|-1=0

如果反比例函数与一次函数y=mx-4(m≠0)的图象都经过点A(a,2).
(1)求点A的坐标及m的值;
(2)求另一个交点B的坐标.

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.

(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?

现有一种海产品,上市时,小王按市场价格20元/千克收购了这种海产品1000千克存放入冷库中.据预测,该海产品的市场价格将每天每千克上涨1元,但冷冻存放这批海产品时每天需要支出各种费用合计320元.同时,平均每天有4千克的海产品损坏不能出售.
(1)设x天后每千克该海产品的市场价格为y元,试写出y与x之间的函数关系式;
(2)若存放x天后,将这批海产品一次性出售,设这批海产品的销售总额为P元,试写出P与x之间的函数关系式;
(3)小王将这批海产品存放多少天后出售可获得最大利润W元?并求出最大利润.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号