如图,曲线抛物线的一部分,且表达式为:
曲线
与曲线
关于直线
对称。
(1)求A、B、C三点的坐标和曲线的表达式;
(2)过点D作轴交曲线
于点D,连接AD,在曲线
上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。
(3)设直线CM与轴交于点N,试问在线段MN下方的曲线
上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。
计算:
如图,两个边长都为1的正方形,其中一个正方形的顶点在另一个正方形的对角线交点上,并且绕该交点旋转,求两个正方形重叠部分(阴影)的面积.
网格中有一个小甲虫(),它喜欢吃牛粪,它又会把吃剩的牛粪滚成牛粪球(
)藏进仓库(
).规定向左为L,向右为R,向上为U,向下D,如:L1表示向左平移一格,D2表示向下平移2格.例如:要把左图中的所有的牛粪球推到最近的仓库里,可以编写程序:L1-R1-U2-D3-R2-U1,小甲虫就能把所有的牛粪球推到最近的仓库.你来试一试,可编写一个怎样的程序才能使小甲虫把右边图上的所有牛粪球推到最近的仓库里.(只需写出一种可行的程序即可)
学校对学生寝室进行了整顿,并举行了文明寝室评比,结果七年级(3)班被评为文明寝室.你看她们的牙刷、牙杯放得多整齐,你能说说她们用了数学中的什么知识?
举一个生活中平移的例子.