游客
题文

如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
(2)如图③,在△ABC中,∠A<∠B<∠C.
①利用尺规作出△ABC的自相似点P(不写出作法,保留作图痕迹);
②如果△ABC的内心P是该三角形的自相似点,请直接写出该三角形三个内角的度数.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

先化简,再求值.其中x=2.

如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.

如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.
(1)求△PEF的边长;
(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;
(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.

直线y=x+b与双曲线y=交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.

(1)直接写出b= ,m=
(2)根据图象直接写出不等式x+b<的解集为
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.

如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.

(1)求证:BE=DF
(2)连接AC交EF于点D,延长OC至点M,使OM=OA,连结EM、FM,试证明四边形AEMF是菱形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号