如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
(2)如图③,在△ABC中,∠A<∠B<∠C.
①利用尺规作出△ABC的自相似点P(不写出作法,保留作图痕迹);
②如果△ABC的内心P是该三角形的自相似点,请直接写出该三角形三个内角的度数.
如图所示,点O、B坐标分别为(0,0)、(3,0),将△ABO绕点O按逆时针方向旋转90°得到△OA'B';
⑴根据题中条件在图中画出直角坐标系,并画出△OA′B′;
⑵点A′的坐标是;
⑶求BB′的长;
如图是庐江中学某景点内的一个拱门,它是⊙O的一部分.已知拱门的地面宽度CD=2m,它的最大高度EM=3m,求构成该拱门的⊙O的半径.
在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园与墙平行的一边长为x(m),花园的面积为y(m2)。
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由:
(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大?最大面积是多少?
用配方法解方程:.
为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题
(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围是 ;药物燃烧完后,y与x的函数关系式为
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室.
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?