(本小题满分14分)已知数列{}是首项为
,公比
的等比数列.
设,数列{
}满足
.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)求数列{}的前
项和
;
(Ⅲ)若对一切正整数
恒成立,求实数
的取值范围.
在中,角A,B,C的对边分别为a,b,c,已知
,
.
(1)求的值;
(2)若为
的中点,求
、
的长.
已知函数,
.
(1)若直线恰好为曲线
的切线时,求实数
的值;
(2)当,
时(其中无理数
),
恒成立,试确定实数
的取值范围.
已知椭圆(
)的短轴长为2,离心率为
.过点M(2,0)的直线
与椭圆
相交于
、
两点,
为坐标原点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若点关于
轴的对称点是
,证明:直线
恒过一定点.
科学研究证实,二氧化碳等温室气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响.环境部门对A市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A市2013年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m万吨(m>0).
(1)求A市2015年的碳排放总量(用含m的式子表示);
(2)若A市永远不需要采取紧急限排措施,求m的取值范围.
如图,在三棱锥中,
,
,
为
的中点,
,
=
.
(1)求证:平面⊥平面
;
(2)求直线与平面
所成角的正弦值.