今年我市的蔬菜市场从5月份开始,由于本地蔬菜的上市,某种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数:.
(1)求出5月份y与x所满足的二次函数关系式;
(2)若5月份的进价m(元/千克)与周数x所满足的函数关系为.求出5月份销售此种蔬菜一千克的利润W(元)与周数x的函数关系式,并求出在哪一周销售此种蔬菜一千克的利润最大?且最大利润是多少?
如图,抛物线与
轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当
=O和
=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。
如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.
(1)求证:AB=AC;(2)当=
时,①求tan∠ABE的值;②如果AE=
,求AC的值。
如图,在小山的西侧A处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C处,这时热气球上的人发现,在A处的正东方向有一处着火点B,十分钟后,在D处测得着火点B的俯角为15°,求热气球升空点A与着火点B的距离。(结果保留根号,参考数据:
(,
,
,
)。
如图①,中,
,
.它的顶点
的坐标为
,顶点
的坐标为
,
,点
从点
出发,沿
的方向匀速运动,同时点
从点
出发,沿
轴正方向以相同速度运动,当点
到达点
时,两点同时停止运动,设运动的时间为
秒.
(1)求的度数.
(2)当点在
上运动时,
的面积
(平方单位)与时间
(秒)之间的函数图象为抛物线的一部分,(如图②),求点
的运动速度.
(3)求(2)中面积与时间
之间的函数关系式及面积
取最大值时点
的坐标.
(4)如果点保持(2)中的速度不变,那么点
沿
边运动时,
的大小随着时间
的增大而增大;沿着
边运动时,
的大小随着时间
的增大而减小,当点
沿这两边运动时,使
的点
有几个?请说明理由.
通过市场调查,一段时间内某地区某一种农副产品的需求数量(千克)与市场价格
(元/千克)(
)存在下列关系:
![]() |
5 |
10 |
15 |
20 |
![]() |
4500 |
4000 |
3500 |
3000 |
又假设该地区这种农副产品在这段时间内的生产数量(千克)与市场价格
(元/千克)成正比例关系:
(
).现不计其它因素影响,如果需求数量
等于生产数量
,那么此时市场处于平衡状态.
(1)请通过描点画图探究与
之间的函数关系,并求出函数关系式;
(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?
(3)如果该地区农民对这种农副产品进行精加工,此时生产数量与市场价格
的函数关系发生改变,而需求数量
与市场价格
的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?