【问题引入】
几个人拎着水桶在一个水龙头前面排队打水,水桶有大有小.他们该怎样排队才能使得总的排队时间最短?
假设只有两个人时,设大桶接满水需要T分钟,小桶接满水需要t分钟(显然T>t),若拎着大桶者在拎小桶者之前,则拎大桶者可直接接水,只需等候T分钟,拎小桶者一共等候了(T+t)分钟,两人一共等候了(2T+t)分钟;反之,若拎小桶者在拎大桶者之前,容易求出两人接满水等候(T+2t)分钟。可见,要使总的排队时间最短。拎小桶者应排在拎大桶者前面。这样,我们可以猜测,几个人拎着水桶在一个水龙头前面排队打水,要使总的排队时间最短,需将他们按水桶从小到大排队.
规律总结:
事实上,只要不按照从小到大的顺序排队,就至少有紧挨着的两个人拎大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需t分钟,并设拎大桶者开始接水时已经等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者接满水一共等候了(m+T+t)分钟,两人共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交换位置,即局部调整这两个人的位置,同样可以计算两个人接满水共等候了 __ ___分钟,共节省了 _________分钟,而其他人的等候时间未变。这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者前,都可以这样局部调整,从而使得总等候时间减少。这样经过一系列调整之后,整个队伍都是从小到大排列,就达到最优状态,总的排队时间就最短.
【方法探究】
一般地,对某些涉及多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想方法就叫做局部调整法.
【实践应用1】
如图1,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?
解析:(1)先假定N为定点,调整M到合适位置,使BM+MN有最小值(相对的).
容易想到,在AC上作AN′=AN(即作点N关于AD的对称点N′),连接BN′交AD于M,则M点是使BM+MN有相对最小值的点.(如图2,M点确定方法找到)
(2)再考虑点N的位置,使BM+MN最终达到最小值.
可以理解,BM+MN = BM+MN′,所以要使BM+MN′有最小值,只需使 ,此时BM+MN的最小值为 .
【实践应用2】
如图,把边长是3的正方形等分成9个小正方形,在有阴影的两个小正方形内(包括边界)分别任取点P、R,与已知格点Q(每个小正方形的顶点叫做格点)构成三角形,求△PQR的最大面积,并在图2中画出面积最大时的△PQR的图形.
901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:
(1)该班的学生共有名;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.
如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.
(1)求证:AB=AE;
(2)若∠A=100°,求∠EBC的度数.
化简:.
如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;
(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.
①试求△PAD的面积的最大值;
②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.
定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.