某校课外兴趣小组在本校学生中开展对“消防安全知识”了解情况的专题调查活动,采取随机抽样的方式进行问卷调查,调查的结果分为A,B,C,D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表格:
类别 |
A |
B |
C |
D |
频数 |
|
32 |
28 |
a |
频率 |
m |
|
0.35 |
|
(1)根据表中数据,问在关于调查结果的扇形统计图中,类别为B的学生数所对应的扇形圆心角的度数为多少?
(2)若A类学生数比D类学生数的2倍少4,求表中a,m的值;
(3)若该校有学生955名,根据调查结果,估计该校学生中类别为C的人数约为多少?
如图所示,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE. 求证:△ABE∽△ADC .
如图,四边形ABCD是菱形,点E、F分别是边AD、CD的中点.求证:BE=BF.
计算:
如图,直线分别与x轴、y轴交于A、B两点;直线
与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位
),点E的运动时间为t(秒).
⑴求点C的坐标.
⑵当0<t<5时,求S与t之间的函数关系式.
⑶求⑵中S的最大值.
⑷当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
已知一次函数和反比例函数
的图象交于点A(1,1).
⑴求两个函数的解析式;
⑵若点B是轴上一点,且△AOB是直角三角形,求B点的坐标.