(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BF=AE.
(2) 如图2,正方形ABCD边长为12,将正方形沿MN折叠,使点A落在DC边上的点E处,且DE=5,求折痕MN的长.
(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,则 GH=___________;
②如图4,矩形ABCD由n个全等的正方形组成,则 GH=___________;(用n的代数式表示).
计算:
已知二次函数:
(1) 证明:当m为整数时,抛物线与x轴交点的横坐标均为整数;
(2) 以抛物线的顶点A为等腰Rt△的直角顶点,作该抛物线的内接等腰Rt△ABC(B、C两点在抛物线上),求Rt△ABC的面积(图中给出的是m取某一值时的示意图);
(3) 若抛物线与直线y=7交点的横坐标均为整数,求整数m的值.
如图,已知梯形ABCD的下底边长AB=8cm,上底边长DC=1cm,O为AB的中点,梯形的高DO=4cm. 动点P自A点出发,在AB上匀速运行,动点Q自点B出发,沿B→C→D→A匀速运行,速度均为每秒1个单位,当其中一个动点到达终点时,另一动点也同时停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).
(1)求S随t变化的函数关系式及t的取值范围;
(2)当t为何值时S的值最大?说明理由.
如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)连结BE,设DC=a,求BE的长.
某商店采购了某品牌的T恤、衬衫、裤子共60件,每款服装按进价至少要购进10件,且恰好用完所带的进货款3700元.设购进T恤x件,衬衫y件.三款服装的进价和预售价如下表:
(1)求出y与x之间的函数关系式;
(2)假设所购进服装全部售出,该商店在采购和销售的过程中需支出各种费用共300元.
①求出预估利润W(元)与T恤x(件)的函数关系式;(注:预估利润W=预售总额-进货款-各种费用)
②求出预估利润的最大值,并写出此时对应购进各款服装多少件.