随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A、B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
有两种配货方式(整箱配货)
方案一:甲乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按照甲乙两店盈利相同配货,其中A种水果甲店 箱,乙店 箱,B种水果甲店 箱,乙店 箱
(1)如果按照方案一配货,请你计算出经销商能盈利多少元;
(2)请你将方案二填写完整(只写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多.(本题6分)
随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.
(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
(2)“非常了解”的4人有 , 两名男生, , 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
如图,已知两直线 , 分别经过点 ,点 ,且两条直线相交于 轴的正半轴上的点 ,当点 的坐标为 时,恰好有 ,经过点 、 、 的抛物线的对称轴与 、 、 轴分别交于点 、 、 , 为抛物线的顶点.
(1)求抛物线的函数解析式;
(2)试说明 与 的数量关系?并说明理由;
(3)若直线 绕点 旋转时,与抛物线的另一个交点为 ,当 为等腰三角形时,请直接写出点 的坐标.
如图,一次函数 与反比例函数 的图象交于 , 两点,与坐标轴分别交于 、 两点.
(1)求一次函数的解析式;
(2)根据图象直接写出 中 的取值范围;
(3)求 的面积.
如图,在矩形 中,对角线 的垂直平分线 分别交 、 、 于点 、 、 ,连接 和 .
(1)求证:四边形 为菱形;
(2)若 , ,求菱形 的周长.
如图, 是 的直径, 平分 ,交 于点 ,过点 的直线 ,垂足为 , 为半径 上一点, 点 、 分别在矩形 的边 和 上 .
(1) 求证: 直线 是 的切线;
(2) 若 , ,求 的值 .