在平面内,将一个图形以任意点
为旋转中心,逆时针旋转一个角度
,得到图形
,再以
为中心将图形
放大或缩小得到图形 ,使图形
与图形
对应线段的比为
,并且图形
上的任一点
,它的对应点
在线段
或其延长线上;我们把这种图形变换叫做旋转相似变换,记为
,其中点
叫做旋转相似中心,
叫做旋转角,
叫做相似比.如图1中的线段
便是由线段
经过
得到的.
(1)如图2,将△ABC经过☆后得到△
,则横线上“☆”应填下列
四个点、
、
、
中的点 .
(2)如图3,△ADE是△ABC经过得到的,
,
则这个图形变换可以表示为( , ).
计算:(1)2-3-22×0.25+20130 (2)
如图,(1)P是等腰三角形A BC底边BC上的一人动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们有何关系?并证明你的猜想。
(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图15(2)中完成图 形,并给予证明。
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论。
如图,在四边形ABCD中BC=CD,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD。
(1)求证:AB=AD。
(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论。
已知:点 B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.
求证:⑴ △ABC≌△DEF;
⑵ BE=CF.