(本小题满分15分)已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求,的标准方程;(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交于不同两点,,且满足?若存在,求出直线的方程;若不存在,说明理由.
已知抛物线(为非零常数)的焦点为,点为抛物线上一个动点,过点且与抛物线相切的直线记为. (1)求的坐标; (2)当点在何处时,点到直线的距离最小?
如图,正方形的边长为1,,分别为边,上的点.当的周长为2时,求的大小.
已知直线,是,之间的一定点,并且点到,的距离分别为,.是直线上一动点,作.且使与直线交于点,求面积的最小值.
已知,,求的值.
若,试用含的式子表示.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号