如图,在一块长为22米、宽为17米的矩形地面上,要修建一条长方形道路LMPQ及一条平行四边形道路RSTK,剩余部分种上草坪,使草坪面积为300平方米.若LM=RS=x米,则根据题意可列出方程为 .
在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1cm,整点P从原点O出发,作向上或向右运动,速度为1cm/s.当整点P从原点出发1秒时,可到达整点(1,0)或(0,1);当整点P从原点出发2秒时,可到达整点(2,0)、(0,2)或;当整点P从原点出发4秒时,可以得到的整点的个数为个.当整点P从原点出发n秒时,可到达整点(x,y),则x、y和n的关系为.
请写出一条经过原点的抛物线解析式 .
如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.
在函数中,自变量
的取值范围是.
对于抛物线 .
(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为;
(2)在坐标系中利用描点法画出此抛物线;
x |
… |
… |
|||||
y |
… |
… |
(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在
<x<
的范围内有解,则t的取值范围是.