(本小题满分12分)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、
原料2千克;生产乙产品1桶需耗
原料2千克,
原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗
、
原料都不超过12千克.如何合理安排生产计划 ,使公司可获得最大利润?最大利润为多少?
定线段AB所在的直线与定平面相交,P为直线AB外的一点,且P不在
内,若直线AP、BP与
分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.
如图所示,正方体ABCD—A1B1C1D1中,E、F分别是AB和AA1的中点.
求证:(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.
在正方体ABCD—A1B1C1D1中,E是CD的中点,连接AE并延长与BC的延长线交于点F,连接BE并延长交AD的延长线于点G,连接FG.求证:直线FG平面ABCD且直线FG∥直线A1B1.
如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.