如图,把△EFP按图所示的方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=
,∠BAD=60°,且AB
.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小
值.
(本小题满分9分)如图,已知A),B(﹣1,2)是一次函数
与反比例函数
图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
(本小题满分8分)我市为治理污水,某地需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对我市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.
(本小题满分8分)小明和小丽用形状大小相同、面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封.游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.
(1)如图,AC是菱形ABCD的对角线,点E,F分别在AB,AD上,且AEAF.
求证:CE=CF.
(2)(本小题满分4分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=,求图中阴影部分的面积.
本题满分7分
(1)解方程组:
(2)先化简:,然后从1、2、–1中选出一个作a的值,求出代数式的值.