甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别中A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s.
(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);
(2)根据(1)中所画图象,完成下列表格:
(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围;
②当t=390s时,他们此时相遇吗?若相遇,应是第几次?若不相遇,请通过计算说明理由,并求出此时甲离A端的距离.
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA="16" cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.
(1)用含t的式子表示△OPQ的面积S;
(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;
(3)当△OPQ∽△ABP时,抛物线y=x2+bx+c经过B、P两点,求抛物线的解析式;
(4)在(3)的条件下,过线段BP上一动点M作轴的平行线交抛物线于N,求线段MN的最大值.
化简或求值:
(1);
(2);
(3)已知:,求代数式
的值。
在△ABC中,∠A=90°,BC=10,tan∠ABC=3:4,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N,以AM、AN为邻边作矩形AMPN,其对角线交点为G。直线MP、NP分别与边BC相交于点E、F,设AP=x。
图1图2
(1)求AB、AC的长;
(2)如图2,当点P落在BC上时,求x的值;
(3)当EF=5时,求x的值;
(4)在动点M的运动过程中,记△MNP与梯形BCNM重合部分的面积为y。试求y关于x的函数表达式,并求出y的最大值。
小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天,x为整数)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天,x为整数)的函数关系如图2所示.
(1)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(2)上市后的第12天至第15天这4天中,哪天的销售金额最多?是多少?
(3)上市后的前15天中,销售金额最多的是哪一天?为什么?
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)若⊙O半径r=3,DE=4,求AD的长.