选修4—4:坐标系与参数方程
已知椭圆C:,直线
:
,
(Ⅰ)以原点O为极点,x轴正半轴为极轴建立极坐标系,求椭圆C与直线的极坐标方程;
(Ⅱ)已知P是上一动点,射线OP交椭圆C于点R,又点Q在OP上且满足
.当点P在
上移动时,求点Q在直角坐标系下的轨迹方程.
已知定义域为[0,1]的函数同时满足以下三个条件:①对任意,总有
;②
;③若
,则有
成立.
(1) 求的值;(2) 函数
在区间[0,1]上是否同时适合①②③?并予以证明
(3) 假定存在,使得
,且
,求证:
求函数的最大值.
已知为正整数,试比较
与
的大小 .
已知数列{an}和{bn}满足:,其中λ为实数,n为正整数.
(Ⅰ)若数列{an}前三项成等差数列,求的值;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
已知是函数
的两个零点,函数
的最小值为
,记
(ⅰ)试探求之间的等量关系(不含
);
(ⅱ)当且仅当在什么范围内,函数
存在最小值?
(ⅲ)若,试确定
的取值范围。