(本小题满分12分)平面直角坐标系中,椭圆C:
(
)的离心率为
,焦点为
、
,直线
:
经过焦点
,并与C相交于A、B两点.
(1)求C的方程;
(2)在C上是否存在C、D两点,满足∥
,
,若存在,求直线
的方程; 若不存在,说明理由.
在平面直角坐标系中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
的倾斜角的正弦值为
,圆
与以线段
为直径的圆关于直线
对称.
(1)求椭圆E的离心率;
(2)判断直线与圆
的位置关系,并说明理由;
(3)若圆的面积为
,求圆
的方程.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.
已知函数.
(1)设,且
,求
的值;
(2)在△ABC中,AB=1,,且△ABC的面积为
,求sinA+sinB的值.
已知集合,若该集合具有下列性质的子集:每个子集至少含有2个元素,且每个子集中任意两个元素之差的绝对值大于1,则称这些子集为
子集,记
子集的个数为
.
(1)当时,写出所有
子集;
(2)求;
(3)记,求证:
已知椭圆过点
和点
.
(1)求椭圆的方程;
(2)设过点的直线
与椭圆
交于
两点,且
,求直线
的方程.