(本小题满分8分)如图,在四棱锥P−ABCD中,PD⊥底面ABCD,底面ABCD为平行四边形,∠ADB=90°,AB=2AD.(Ⅰ)求证:平面PAD⊥平面PBD;(Ⅱ)若PD=AD=1,,求二面角P−AD−E的余弦值.
已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线方程.(10分)
已知椭圆C的焦点F1(-,0)和F2(,0),长轴长6,设直线交椭圆C于A、B两点,求线段AB的中点坐标。(8分)
已知集合,,且,求实数的取值范围。
已知向量,,其中,设,且函数的最大值为。 (Ⅰ)求函数的解析式; (Ⅱ)设,求函数的最大值和最小值以及对应的值; (Ⅲ)若对于任意的实数,恒成立,求实数的取值范围。
已知,且是方程的两根,试求: (Ⅰ)的值; (Ⅱ)的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号