如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.20T,方向垂直纸面向里,电场强度E1=1.0×105V/m,PQ为板间中线。紧靠平行板右侧边缘坐标系的第一象限内,有一边界AO、与y轴的夹角∠
=450,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B2=0.25T,边界线的下方有竖直向上的匀强电场,电场强度E2=5.0×105V/m。一束带电荷量q=8.0×10-19C、质量m=8.0×10-26Kg的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从
轴上坐标为(0,0.4 m)的Q点垂直
轴射入磁场区,多次穿越边界线OA。求:
(1)离子运动的速度;
(2)离子从进入磁场到第二次穿越边界线OA所需的时间;
(3)离子第四次穿越边界线的位置坐标。
如图所示,在xoy平面内y轴与MN边界之间有沿x轴负方向的匀强电场,y轴左侧和MN边界右侧的空间有垂直纸面向里、磁感应强度大小相等的匀强磁场,MN边界与y轴平行且间距保持不变.一质量为m、电荷量为 q的粒子以速度v0从坐标原点O沿x轴负方向射入磁场,每次经过磁场的时间均为t0,粒子重力不计.
(1)求磁感应强度的大小B;
(2)粒子回到原点O,其运动路程最短时,经过的时间为t="5" t0,求电场区域的宽度d 和此时的电场强度E0;
(3)若带电粒子能够回到原点0,则电场强度E应满足什么条件?
如图,在第二象限的圆形区域I存在匀强磁场,区域半径为R,磁感应强度为B,且垂直于Oxy平面向里;在第一象限的区域II和区域III内分别存在匀强磁场,磁场宽度相等,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。质量为m、带电荷量q(q>0)的粒子a于某时刻从圆形区域I最高点Q(Q和圆心A连线与y轴平行)进入区域I,其速度v=。已知a在离开圆形区域I后,从某点P进入区域II。该粒子a离开区域II时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b从P点进入区域II,其速度沿x轴正向,大小是粒子a的
。不计重力和两粒子之间的相互作用力。求:
(1)区域II的宽度;
(2)当a离开区域III时,a、b两粒子的y坐标之差.
如图所示,半径为r的圆形区域内有方向垂直纸面向里的匀强磁场,圆心O1在x轴上,且OO1等于圆的半径。虚线MN平行于x轴且与圆相切,在MN的上方存在匀强电场和匀强磁场,电场强度的大小为E0,方向沿x轴的负方向,磁感应强度的大小为B0,方向垂直纸面向外。两个质量为m、电荷量为q的正粒子a、b,以相同大小的初速度从原点O射入磁场,速度的方向与x轴夹角均为30˚。两个粒子射出圆形磁场后,垂直MN进入MN上方场区中恰好都做匀速直线运动。不计粒子的重力,求:
(1)粒子初速度v的大小。
(2)圆形区域内磁场的磁感应强度B的大小。
(3)只撤去虚线MN上方的磁场B0,a、b两个粒子到达y轴的时间差△t 。
一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
如图所示平面直角坐标系xoy位于竖直平面内,在坐标系的整个空间存在竖直向上的匀强电场,在区域Ⅰ(0≤x≤L)还存在匀强磁场,磁场方向垂直于xoy平面向里。在x轴上方有一光滑弧形轨道PQ,PQ两点间竖直高度差为。弧形轨道PQ末端水平,端口为Q (3L,
);某时刻一质量为m、带电荷量为+q的小球b从y轴上的M点进入区域I,其速度方向沿x轴正方向;小球b在I区内做匀速圆周运动。b进入磁场的同时,另一个质量也为m、带电荷量为 q的小球a从P点由静止释放。两小球刚好在x=2L上的N点(没具体画出)反向等速率相碰。重力加速度为g。
求:(l)电场强度E;
(2)a球到达N点时的速度v;
(3)M点的坐标。