选修4-1:几何证明选讲
如图所示,已知⊙O1与⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1,⊙O2于点D,E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长;
设数列的前项n和为
,若对于任意的正整数n都有
.
(1)设,求证:数列
是等比数列,并求出
的通项公式。
(2)求数列的前n项和.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,
∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长;
(2)求cos<>的值;
(3)求证:A1B⊥C1M.
命题p:关于的不等式
对于一切
恒成立,命题q:函数
是增函数,若
为真,
为假,求实数
的取值范围;
某商场预计全年分批购入每台价值为2 000元的电视机共
3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
已知、
、
为
的三内角,且其对边分别为
、
、
,若
.
(Ⅰ)求; (Ⅱ)若
,求
的面积