(本小题满分12分)
有4张面值相同的债券,其中有2张中奖债券.
(1)有放回地从债券中任取2次,每次取出1张,计算取出的2张都是中奖债券的概率.
(2)无放回地从债券中任取2次,每次取出1张,计算取出的2张中至少有1张是中奖债券的概率.
设数列的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列与数列
的通项公式;
(II)设数列的前
项和为
,是否存在正整数
,使得
成立?若存在,找出一个正整数
;若不存在,请说明理由;
(III)记,设数列
的前
项和为
,求证:对任意正整数
都有
;
如图,椭圆与一等轴双曲线相交,
是其中一个交点,并且双曲线的顶点是该椭圆的焦点
,双曲线的焦点是椭圆的顶点
,
的周长为
.设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
已知函数,
,其中
.
(I)设函数.若
在区间
上不单调,求
的取值范围;
(II)设函数是否存在
,对任意给定的非零实数
,存在惟一的非零实数
(
),使得
成立?若存在,求
的值;若不存在,请说明理由.
设数列
(1)求数列的通项公式;
(2)设,求数列
(3)设,
,记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
如图,在三棱锥中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;
(Ⅱ)当为
的中点时,求
与平面
所成角的正弦值;
(Ⅲ)是否存在点使得二面角
为直二面角?并说明理由.