游客
题文

如图,椭圆与一等轴双曲线相交,是其中一个交点,并且双曲线的顶点是该椭圆的焦点,双曲线的焦点是椭圆的顶点的周长为.设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线的斜率分别为,证明
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数为常数.
(1)若函数处的切线与轴平行,求的值;
(2)当时,试比较的大小;
(3)若函数有两个零点,试证明.

已知椭圆的右准线,离心率是椭圆上的两动点,动点满足,(其中为常数).
(1)求椭圆标准方程;
(2)当且直线斜率均存在时,求的最小值;
(3)若是线段的中点,且,问是否存在常数和平面内两定点,使得动点满足,若存在,求出的值和定点;若不存在,请说明理由.

图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔与桥面垂直,通过测量得知,当中点时,.
(1)求的长;
(2)试问在线段的何处时,达到最大.




图1



如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面
(2)若,求证:平面⊥平面.

中,角的对边分别为,若.
(1)求证:
(2)当时,求的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号