已知数列中,
,
(n∈N*),
(1)试证数列是等比数列,并求数列{
}的通项公式;
(2)在数列{}中,求出所有连续三项成等差数列的项;
(3)在数列{}中,是否存在满足条件1<r<s的正整数r ,s ,使得b1,br,bs成等差数列?若存在,确定正整数r,s之间的关系;若不存在,说明理由.
已知点
(1)求证:恒为锐角;
(2)若四边形为菱形,求
的值
(1)若求
;
(2)若,求
的值.
如图,在平面直角坐标系中,圆
交
轴于点
(点
在
轴的负半轴上),点
为圆
上一动点,
分别交直线
于
两点。
(1)求两点纵坐标的乘积;
(2)若点的坐标为
,连接
交圆
于另一点
.
①试判断点与以
为直径的圆的位置关系,并说明理由;
②记的斜率分别为
,试探究
是否为定值?若是,请求出该定值;若不是,请说明理由.
如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
如图,在平面直角坐标系中,平行于
轴且过点
(3
,2)的入射光线
被直线
反射.反射光线
交
轴于
点,圆
过点
且与
都相切。
(1)求所在直线的方程和圆
的方程;
(2)设分别是直线
和圆
上的动点,求
的最小值及此时点
的坐标.