如图,在三棱锥
中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;
(Ⅱ)当
为
的中点时,求
与平面
所成角的正弦值;
(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
设函数f(x)=
×
,其中向量
="(2cosx,1),"
=(cosx,
sin2x+m).
(1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间;
(2)当xÎ[0
]时,ô f(x)ô <4恒成立,求实数m的取值范围.
已知向量
=(sinA,cosA),
=
,
,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx,(xÎR) 最大值及取最大值时x的集合.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.
已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2
)的值;
(2)求f(x)的解析式.
已知f(α)= 
(1)化简f(α)
(2)若cos(
+2α)=
,求f(
-α)的值.