如图所示,在棱长为的
正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。
(Ⅰ)求证:BH//平面A1EFD1;
(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。
(本小题满分10分)在海岛上有一座海拔1km的山峰,山顶设有一个观察站
.有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东
、俯角为
的
处,到11:10时,又测得该船在岛北偏西
、俯角为
的
处.
(1) 求船的航行速度;
(2) 求船从到
行驶过程中与观察站
的最短距离.
(本小题满分12分)已知函数.
(Ⅰ)若,求曲线
在
处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
(本小题满分12分)在直三棱柱中, AC=4,CB=2,AA1=2
,E、F分别是
的中点。
(1)证明:平面平面
;
(2)证明:平面ABE;
(3)设P是BE的中点,求三棱锥的体积。
已知椭圆:
(
)的离心率
,左、右焦点分别为
、
,点
满足:
在线段
的中垂线上.
(1)求椭圆的方程;
(2)若斜率为(
)的直线
与
轴、椭圆
顺次相交于点
、
、
,且
,求
的取值范围.
已知函数.
(1)若在
上是增函数, 求实数a的取值范围.
(2)若是
的极大值点,求
在
上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数的图像与函数
的图像恰有3个交点,若存在,求出b的取值范围,若不存在,说明理由.