如图所示,在直角△ABC中,∠B=90°,BC=,∠C=30°,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE,EF.
(1)求证AE=DF.
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t的值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形,∠EDF=90°?请说明理由.
我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了解析统计,制作了如下两幅不完整的统计图.
(1)李老师采取的调查方式是 (填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共
件,其中B班征集到作品 ,请把图2补充完整.
(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出解析过程)
如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:.
(1)求加固后坝底增加的宽度AF;
(2)求完成这项工程需要土石多少立方米?(结果保留根号)
如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)
(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;
(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)
先化简,再求值:,其中
.
如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)