如图1,在平面直角坐标系中,四边形OABC是矩形,OA=4,OC=3.直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,且保持直线m∥AC.设直线m与矩形OABC的其中两条边分别交于点M、N,直线m运动的时间为t(秒),△OMN的面积为S,且S与t的函数图象如图2(实线部分)所示.
|
如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cos A=.
(1)求线段CD的长;
(2)求sin ∠DBE的值.
如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是多少?
如图,在△ABC中,AD是BC边上的高,tan C=,AC=3,AB=4,求BD的长.(结果保留根号)
如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数;
(2)求AB的长.
(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<
∠ABC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′.
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠45°).
求证:DE2=AD2+EC2.