[探究发现]如图①,已知△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线于点F,当点E是BC的中点时,有AE=EF成立.
[数学思考]某数学兴趣小组在探究AE与EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:
当点E是直线BC上(B,C除外)任意一点时(其他条件不变),结论AE=EF仍然成立.
假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在图②中画出图形,并证明AE=EF.
[拓展应用]当点E在线段BC的延长线上时,若CE=BC,在图③中画出图形,并运用上述结论求出S△ABC︰S△AEF的值.
a,b为两个有理数,表示在数轴上的位置如图所示,把-a,-b在数轴上表示出来,再把a,b,-a,-b,0按从小到大的顺序排列出来。
一辆货车从超市出发,向东走了2km,到达小刚家,继续向东走了3km到达小红家,又向西走了9km到达小英家,最后回到超市.
⑴请以超市为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴。并在数轴上表示出小刚家、小红家、小英家的位置;
⑵小英家距小刚家有多远?
⑶货车一共行驶了多少千米?
计算:(1)
(2)33.1-10.7-(-22.9)-
(3)
(4)
(5)(6)
把下列各数填入大括号:-2.4,3,2.004,-,1
, -
,0,π,-(-2.28),3.14,-|-4|, -2.1010010001…(每两个1之间依次增加1个0)
正有理数集合:(…)整数集合:(…)
负分数集合:(…)无理数集合:(…)
如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△,连接.设
交AB于D,
分别交AB、AC于E、F.
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△全等除外);
(2)当△是等腰三角形时,求α;