【问题】
如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF.
【思考】
将△ABE绕点A逆时针旋转90°至△ADE′的位置,易知点F、D、E′在一条直线上,由SAS可以证得△AE′F≌△AEF.由此得到:EF=E′F=DE′+DF=BE+DF.
【探究】
(1)如图②,在四边形ABCD中,点E、F分别在BC、CD上,AB=AD,∠B+∠D=180°,∠EAF=∠BAD,BE=1,EF=2.2,求DF的长.
(2)将图②中的∠EAF绕点A旋转到如图③的位置,除去(1)中的条件BE=1,EF=2.2,其它条件不变时,探索线段EF、BE、DF之间的数量关系,并说明理由.
如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.求证:CD是⊙O的切线.
袋中有大小相同的红球和白球共5个,任意摸出一红球的概率是.求:
(1)袋中红球、白球各有几个?
(2)任意摸出两个球(不放回)均为红球的概率是多少?
如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.
(1)指出旋转中心,并求出旋转的度数;
(2)求出∠BAE的度数和AE的长.
解下列方程:(1)x2﹣4x﹣7=0(2)(2x﹣1)2=(3﹣x)2.
如图,二次函数的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)请直接写出点D的坐标:
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.