(本题10分)如图,从城市A到B城市的公路需经过城市C,图中AC=100千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两城市间修建一条笔直的公路.
(1)求改直的公路AB的长;
(2)问公路改直后比原来缩短了多少千米?
(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
(本小题满分12分)如图1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD。
(1)试说明:△ABC≌△FED。
(2)若图形经过平移和旋转后得到图2,且有∠EDB=25º,∠A=66º,试求∠AMD的度数。
(3)将图形继续旋转后得到图3,此时D,B,F三点在同一条直线上,若DB=2DF,连接EB,已知△EFB的面积为5cm2,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请你说明理由。
(本小题满分10分)如图,已知BD为△ABC的中线,CE⊥BD于E, AF⊥BD于F. 于是小白同学说:“BE+BF2BD ”.你认为他的判断对吗?为什么?
(本小题满分10分)如图,已知O是线段AC、DB的交点,且AC=BD,AB=DC.求证:OB=OC.
(本小题满分8分)如图,已知AB=AC,AE=AD,BD=CE,说出∠1=∠2成立的理由.
(本小题满分8分)尺规作图:(不写作法,保留作图痕迹)
已知线段a 、b和.
(1)作三角形△ABC,使∠B=、AB=a 、BC=b.
(2)作△ABC的高线CD.