已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:OE=OF.
(2)当∠DOE等于 度时,四边形BFDE为菱形.(直接填写答案即可)
已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙.若AB=6,试回答下列问题:
(1)图甲中的BC长是多少?
(2)图乙中的a是多少?
(3)图甲中的图形面积的多少?
(4)图乙的b是多少?
某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(1)计算并完成表格:
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)
转动转盘的次数n |
100 |
150 |
200 |
500 |
800 |
1000 |
落在“铅笔”的次数m |
68 |
111 |
136 |
345 |
564 |
701 |
落在“铅笔”的频率![]() |
(在下面的23、24两题中任选做一题,若两题都答,按23题评分)
如图,已知AB∥CD,AD,BC相交于E,F为EC上一点,且∠EAF=∠C.
求证:(1) ∠EAF=∠B; (2)AF2=FE·FB
8分)有些图形既是轴对称图形又是中心对称图形,比如正方形。请你画出另外三种有此性质的图形(画图工具不限,不写画法)。
图一:图二:图三:
如图,梯形
中,
∥
,
,
,
.动点
从点
出发,以每秒
个单位长度的速度在线段
上运动;动点
同时从点
出发,以每秒
个单位长度的速度在线段
上运动.以
为边作等边△
,与梯形
在线段
的同侧.设点
、
运动时间为
,当点
到达
点时,运动结束.
(1)当等边△的边
恰好经过点
时,求运动时间
的值;
(2)在整个运动过程中,设等边△与梯形
的重合部分面积为
,请直接写出
与
之间的函数关系式和相应的自变量
的取值范围;
(3)如图,当点
到达
点时,将等边△
绕点
旋转
(
),
直线分别与直线
、直线
交于点
、
.是否存在这样的
,使△
为等腰三角形?若存在,请求出此时线段
的长度;若不存在,请说明理由.