如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
一条河的两岸有一段是平行的,在该河岸的这一段每隔5米有一棵树,河对岸每隔50米有一根电线杆.在这岸离开岸边25米的A处看对岸,看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,且这两棵树之间还有3棵树,求河的宽度.
在Rt△ABC中,∠C=900, tanB=, ∠ADC=45°,DC=6,求BD的长.
如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,
沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.
在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足y=-x2+10x.
(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?
(2)经过多长时间,炮弹落在地上爆炸?
如图,在方格纸中
(1)请在方格纸上建立平面直角坐标系,使,并求出B点坐标;
(2)以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形
;
(3)计算的面积
.