如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.
(1)求对学校A的噪声影响最大时卡车P与学校A的距离;
(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.
图1,图2都是 的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点
(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);
(2)图1中所画的平行四边形的面积为 .
如图,菱形 的对角线 , 相交于点 ,且 , .求证:四边形 是矩形.
在一个不透明的口袋中装有 1 个红球, 1 个绿球和 1 个白球, 这 3 个球除颜色不同外, 其它都相同, 从口袋中随机摸出 1 个球, 记录其颜色 . 然后放回口袋并摇匀, 再从口袋中随机摸出 1 个球, 记录其颜色, 请利用画树状图或列表的方法, 求两次摸到的球都是红球的概率 .
如图,在平面直角坐标系中,有抛物线 .抛物线 经过原点,与 轴正半轴交于点 ,与其对称轴交于点 , 是抛物线 上一点,且在 轴上方,过点 作 轴的垂线交抛物线 于点 ,过点 作 的垂线交抛物线 于点 (不与点 重合),连结 ,设点 的横坐标为 .
(1)求 的值;
(2)当抛物线 经过原点时,设 与 重叠部分图形的周长为 .
①求 的值;
②求 与 之间的函数关系式;
(3)当 为何值时,存在点 ,使以点 , , , 为顶点的四边形是轴对称图形?直接写出 的值.
如图,在菱形 中,对角线 与 相交于点 , , ,点 从点 出发,沿 以每秒2个单位长度的速度向终点 运动,当点 不与点 重合时,过点 作 于点 ,作 交 于点 ,过点 作 交 (或 的延长线)于点 ,得到矩形 ,设点 运动的时间为 秒
(1)求线段 的长(用含 的代数式表示);
(2)求点 与点 重合时 的值;
(3)设矩形 与菱形 重叠部分图形的面积与 平方单位,求 与 之间的函数关系式;
(4)矩形 的对角线 与 相交于点 ,当 时, 的值为 ;当 时, 的值为 .