某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.
(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2) 通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
如图1,抛物线 的顶点 在 轴上,交 轴于 ,将该抛物线向上平移,平移后的抛物线与 轴交于 , ,顶点为 .
(1)求点 的坐标和平移后抛物线的解析式;
(2)点 在原抛物线上,平移后的对应点为 ,若 ,求点 的坐标;
(3)如图2,直线 与平移后的抛物线交于 .在抛物线的对称轴上是否存在点 ,使得以 , , 为顶点的三角形是直角三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图, 的直径为 ,点 在 上,点 , 分别在 , 的延长线上, ,垂足为 , .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
某冷饮店用200元购进 , 两种水果共 ,进价分别为7元 和12元 .
(1)这两种水果各购进多少千克?
(2)该冷饮店将所购进的水果全部混合制成50杯果汁,要使售完后所获利润不低于进货款的 ,则每杯果汁的售价至少为多少元?
甲、乙两城市某月1日 日中午12时的气温(单位: 如下:
甲 22 20 25 22 18 23 13 27 27 22
乙 21 22 24 18 28 21 18 19 26 18
整理数据:这两组数据的频数分布表如表一.
分析数据:这两组数据的平均数、中位数、众数和方差如表二所示.
表一
分组 |
频数 |
|
甲 |
乙 |
|
|
1 |
0 |
|
1 |
|
|
5 |
|
|
3 |
2 |
表二
统计量 |
甲 |
乙 |
平均数 |
|
21.5 |
中位数 |
22 |
|
众数 |
22 |
|
方差 |
16.09 |
11.25 |
请填空:
(1)在上表中, , , , , ;
(2) 城的气温变化较小;
(3) 城的气温较高,理由是 .
如图,我军的一艘军舰在南海海域巡航,在 处时,某岛上的灯塔 位于 的南偏西 方向,距离为 ,军舰沿南偏东 方向航行一段时间后到达 处,此时,灯塔 位于 的西北方向上.
(1)分别求出 和 的大小;
(2)求 到灯塔 的距离.(结果保留1位小数,参考数据: ,