如图1,抛物线 的顶点 在 轴上,交 轴于 ,将该抛物线向上平移,平移后的抛物线与 轴交于 , ,顶点为 .
(1)求点 的坐标和平移后抛物线的解析式;
(2)点 在原抛物线上,平移后的对应点为 ,若 ,求点 的坐标;
(3)如图2,直线 与平移后的抛物线交于 .在抛物线的对称轴上是否存在点 ,使得以 , , 为顶点的三角形是直角三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
已知正方形 的边长为4个单位长度,点 是 的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).
(1)在图1中,将直线 绕着正方形 的中心顺时针旋转 ;
(2)在图2中,将直线 向上平移1个单位长度.
为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从 , , , 四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.
(1)“ 志愿者被选中”是 事件(填“随机”或“不可能”或“必然” ;
(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出 , 两名志愿者被选中的概率.
解不等式组: 并将解集在数轴上表示出来.
(1)计算: ;
(2)如图,在 中, , , 平分 交 于点 , 于点 ,求证: .
甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元. 乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元. |
说明:①汽车数量为整数;②月利润 月租车费 月维护费;③两公司月利润差 月利润较高公司的利润 月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是 48000 元;当每个公司租出的汽车为 辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出 元 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 的取值范围.