如图, 的直径为 ,点 在 上,点 , 分别在 , 的延长线上, ,垂足为 , .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
对某一个函数给出如下定义:若存在实数,对于任意的函数值
,都满足
,则称这个函数是有界函数,在所有满足条件的
中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1)分别判断函数和
是不是有界函数?若是有界函数,求其边界值;
(2)若函数的边界值是2,且这个函数的最大值也是2,求
的取值范围;
(3)将函数的图象向下平移
个单位,得到的函数的边界值是
,当
在什么范围时,满足
?
在正方形外侧作直线
,点
关于直线
的对称点为
,连接
,其中
交直线
于点
.
(1)依题意补全图1;
(2)若,求
的度数;
(3)如图2,若,用等式表示线段
之间的数量关系,并证明.
在平面直角坐标系中,抛物线
经过点
(0,
),
(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点关于原点的对称点为
,点
是抛物线对称轴上一动点,记抛物线在
,
之间的部分为图象
(包含
,
两点).若直线
与图象
有公共点,结合函数图像,求点
纵坐标
的取值范围.
阅读下面材料:
小腾遇到这样一个问题:如图1,在中,点
在线段
上,
,
,
,
,求
的长.
小腾发现,过点作
,交
的延长线于点
,通过构造
,经过推理和计算能够使问题得到解决(如图2).
请回答:的度数为,
的长为.
参考小腾思考问题的方法,解决问题:
如图3,在四边形中,
,
,
,
与
交于点
,
,
,求
的长.
如图,是
的直径,
是
的中点,
的切线
交
的延长线于点
,
是
的中点,
的延长线交切线
于点
,
交
于点
,连接
.
(1)求证:;
(2)若,求
的长.