如图, 的直径为 ,点 在 上,点 , 分别在 , 的延长线上, ,垂足为 , .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.
根据图中信息,回答下列问题:
(1)甲的平均数是 ,乙的中位数是 ;
(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?
如图,在正方形 中, 是边 的中点, 是边 的中点,连接 、 .求证: .
如图,在平面直角坐标系中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的解析式;
(2)在抛物线上是否存在点 ,使得 是以点 为直角顶点的直角三角形?若存在,求出符合条件的点 的坐标;若不存在,请说明理由;
(3)点 为抛物线上的一动点,过点 作 垂直于 轴于点 ,交直线 于点 ,过点 作 轴的垂线,垂足为点 ,连接 ,当线段 的长度最短时,求出点 的坐标.
如图,已知 的半径为 ,射线 经过点 , ,射线 与 相切于点 . 、 两点同时从点 出发,点 以 的速度沿射线 方向运动,点 以 的速度沿射线 方向运动,设运动时间为 .
(1)求 的长;
(2)当直线 与 相切时,求证: ;
(3)当 为何值时,直线 与 相切?
如图,一次函数 的图象与反比例函数 的图象交于 、 两点,过点 作 轴,一次函数图象分别交 轴、 轴于 、 两点, ,且 .
(1)求点 坐标;
(2)求一次函数和反比例函数的表达式;
(3)根据图象直接写出一次函数值小于反比例函数值时,自变量 的取值范围.