(本小题10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一直线上.小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°.已知点D到地面的距离DE为1.56m,EC =21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数点后一位).参考数据:tan47°≈1.07,tan42°≈0.90.
有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?
如图,在□ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.
(1)解方程:;(2)解方程组:
.
(1)(-3)2-+(-1)0+2cos30º;(2)化简:
.