定义为函数
的 “特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}.
(1)将“特征数”是的函数图象向上平移2个单位,得到一个新函数,这个函数的解析式是 ;
(2)在(1)中,平移前后的两个函数分别与y轴交于O、A两点,与直线分别交于C、B两点,判断以A、B、C、O四点为顶点的四边形形状,并说明理由。
(3)若(2)中的四边形(不包括边界)始终覆盖着“特征数”是的函数图象的一部分,求满足条件的实数b的取值范围?
某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):
求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?
(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.
(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?
已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E。
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明。
解方程:
计算:
A、B两地果园分别有苹果10吨和40吨,全部运送到C、D两地,而C、D两地分别需要苹果15吨和35吨;已知从A、B地到C、D地的运价如下表:
(1)若从B果园运到C地的苹果为x吨,则从B果园运到D地的苹果为________吨;从A果园将苹果运往D地的运输费用为__________________________元.
(2)用含x的式子来表示出总运输费(要求:列出算式,并化简)