如果两个正数,即
,有下面的不等式:
当且仅当
时取到等号
我们把叫做正数
的算术平均数,把
叫做正数
的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
例:已知,求函数
的最小值。
解:令,则有
,得
,当且仅当
时,即
时,函数有最小值,最小值为
。
根据上面回答下列问题已知
,则当
时,函数
取到最小值,最小值
为 用篱笆围一个面积为
的矩形花园,问这个矩形的长、宽各为多少时,所
用的篱笆最短,最短的篱笆周长是多少已知
,则自变量
取何值时,函数
取到最大值,最大值为多少?
已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.
小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校,我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:
(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?
(2)小明共用多长时间到学校的?
(3)小明修车前的速度和修车后的速度分别是多少?
(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?
如图,O为直线AB上一点,OC平分∠BOD,OE⊥OC,垂足为O,∠AOE与∠DOE有什么关系,请说明理由.
计算下列各题:
(1)(﹣2x3y)2(﹣xy2)(2)(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b)
(3)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=﹣2.
如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题:
①如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB的中点,且∠DCE=45°,求DE的长;
②如图3,在△ABC中,∠BAC=45°,AD⊥BC,BD=2,CD=3,则△ABC的面积为 _________ (直接写出结果,不需要写出计算过程).