如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若,且OC=4,求PA的长和tanD的值.
如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.
求证:(1)△AEH≌△CGF;
(2)四边形EFGH是菱形.
阅读下列材料,并解决相关的问题.
按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为,依次类推,排在第
位的数称为第
项,记为
.
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母表示(
).如:数列1,3,9,27,…为等比数列,其中
,公比为
.
则:(1)等比数列3,6,12,…的公比为,第4项是.
(2)如果一个数列,
,
,
,…是等比数列,且公比为
,那么根据定义可得到:
,
,
,……
.
所以:,
,
,
由此可得:(用
和
的代数式表示)
(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.
如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A.B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
(1)求点B到AC的距离;
(2)求线段CD的长度.
小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?
先化简,再求值:,其中
,
.