雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.
(1)本次被调查的市民共有多少人?
(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数.
(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?
解不等式(组).
(1)5x+20≥0(把解集在数轴上表示出来)
(2)
(3)1≤﹣2x+5≤3
(4).
已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.
(1)求四边形ABDC的面积.
(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?
(3)当A1与D不重合时
①连接A1、D,求证:A1D∥BC;
②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.
如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.
(1)求正方形ABCD的周长;
(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.
(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.
①求证:BH⊥DG;
②当AE=时,求线段BH的长(精确到0.1).
已知正比例函数y=x和反比例函数的图象都经过点A(3,3).
(1)直接写出反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.
已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.