如图,抛物线y=x2+mx+n与直线y=﹣
x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求抛物线的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)条件下:
(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?
在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过点 、 .
(1)求 、 满足的关系式及 的值.
(2)当 时,若 的函数值随 的增大而增大,求 的取值范围.
(3)如图,当 时,在抛物线上是否存在点 ,使 的面积为1?若存在,请求出符合条件的所有点 的坐标;若不存在,请说明理由.
如图,在正方形 中, 是 边上一点,(与 、 不重合),连接 ,将 沿 所在的直线折叠得到 ,延长 交 于 ,连接 ,作 ,与 的延长线交于点 ,连接 .显然 是 的平分线, 是 的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于 的角平分线),并说明理由.
汛期到来,山洪暴发.下表记录了某水库 内水位的变化情况,其中 表示时间(单位: , 表示水位高度(单位: ,当 时,达到警戒水位,开始开闸放水.
|
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
18 |
20 |
|
14 |
15 |
16 |
17 |
18 |
14.4 |
12 |
10.3 |
9 |
8 |
7.2 |
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 .
如图, 是 的直径, 是 上一点,过点 作 ,交 的延长线于 ,交 于点 , 是 的中点,连接 .
(1)求证: 是 的切线.
(2)若 ,求证: .
鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿 方向开挖隧道,为了加快施工速度,要在小山的另一侧 、 、 共线)处同时施工.测得 , , ,求 的长.