已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).
(1)求抛物线l2的函数表达式;
(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;
(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.
如图所示,将长方形ABCD沿直线BD折叠,使C点落在C′处,BC′交AD于E.
(1)求证:BE=DE;
(2)若AD=8,AB=4,求△BED的面积.
已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.
问题探索
(1)计算与观察:把的分子分母同时加上1,得到
,把
的分子分母同时加上2,得到
.比较
的大小关系:
,
(填“>”、“<”)
(2)归纳猜想:若正分数(a>b>0)中的分子和分母同时加上正数m,得到
,结论又如何呢?
(填“>”、“<”)
(3)请证明你的猜想:
(1)已知在△ABC中,AB=,AC=
,BC=5,则△ABC的形状为 .(直接写出结果)
(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上.(每个小方格的边长为1)
(1)计算:
(2)解方程:.