已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).
(1)求抛物线l2的函数表达式;
(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;
(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.
(本题4分) 如图,先将ΔABC向下平移4个单位得到,再画
,使它与
关于直线l对称,请在所给的方格纸中依次作出
和
.
.
如图,在正方形ABCD内,已知两个动圆⊙O1与⊙Q2互相外切.且⊙O1与边AB,AD相切,⊙O2与边BC,CD相切,若正方形的边长为1,⊙O1与⊙Q2的半径分别为,
.
(1)求
和
的关系式;
(2)求⊙O1与⊙Q2的面积之和的最小值.
某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右测上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.
.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC:
(2)若AB=4,AD=3
,AE=3,求AF的长.
如图:是7×7的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(-4,2),B点坐标为(-2,4).
(2)在第二象限内格点上找一点C,使C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是_________;△ABC周长是____________.(结果保留根号)
(3)画出三角形ABC以O为位似中心,相似比为
的位似图形.